PHARMACOLOGY (MPL)

MODERN PHARMACEUTICAL ANALYTICAL TECHNIQUES
(MPL 101T)

Scope
This subject deals with various advanced analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are NMR, Mass spectrometer, IR, HPLC, GC etc.

Objectives
After completion of course student is able to know about,
- Chemicals and Excipients
- The analysis of various drugs in single and combination dosage forms
- Theoretical and practical skills of the instruments

THEORY

2. NMR spectroscopy: Quantum numbers and their role in NMR, Principle, Instrumentation, Solvent requirement in NMR, Relaxation process, NMR signals in various compounds, Chemical shift, Factors influencing chemical shift, Spin-Spin coupling, Coupling constant, Nuclear magnetic double resonance, Brief outline of principles of FT-NMR and 13C NMR. Applications of NMR spectroscopy.

4. Chromatography: Principle, apparatus, instrumentation, chromatographic parameters, factors affecting resolution, isolation of drug from excipients, data interpretation and applications of the following:
 j) Thin Layer chromatography
 k) High Performance Thin Layer Chromatography
 l) Ion exchange chromatography
 m) Column chromatography
 n) Gas chromatography
 o) High Performance Liquid chromatography
 p) Ultra High Performance Liquid chromatography
 q) Affinity chromatography
 r) Gel Chromatography

5. Electrophoresis: Principle, Instrumentation, Working conditions, factors affecting separation and applications of the following:
 a) Paper electrophoresis
 b) Gel electrophoresis
 c) Capillary electrophoresis
 d) Zone electrophoresis
 e) Moving boundary electrophoresis
 f) Iso electric focusing

X ray Crystallography: Production of X rays, Different X ray methods, Bragg’s law, Rotating crystal technique, X ray powder technique, Types of crystals and applications of X-ray diffraction.

Thermal Techniques: Principle, thermal transitions and Instrumentation (Heat flux and power-compensation and designs), Modulated DSC, Hyper DSC, experimental parameters (sample preparation, experimental conditions, calibration, heating and cooling rates, resolution, source of errors) and their influence, advantage and disadvantages, pharmaceutical applications. Differential Thermal Analysis (DTA): Principle, instrumentation and advantage and disadvantages, pharmaceutical applications, derivative differential thermal analysis (DDTA). TGA: Principle, instrumentation, factors affecting results, advantage and disadvantages, pharmaceutical applications.
REFERENCES

ADVANCED PHARMACOLOGY - I
(MPL 102T)

Scope
The subject is designed to strengthen the basic knowledge in the field of pharmacology and to impart recent advances in the drugs used for the treatment of various diseases. In addition, this subject helps the students to understand the concepts of drug action and mechanisms involved.

Objectives
Upon completion of the course the student shall be able to:
- Discuss the pathophysiology and pharmacotherapy of certain diseases
- Explain the mechanism of drug actions at cellular and molecular level
- Understand the adverse effects, contraindications and clinical uses of drugs used in treatment of diseases

THEORY 60 Hrs
1. General Pharmacology 12 Hrs
 b. Pharmacodynamics: Mechanism of drug action and the relationship between drug concentration and effect. Receptors, structural and functional families of receptors, quantitation of drug receptors interaction and elicited effects.

2. Neurotransmission 12 Hrs
 a. General aspects and steps involved in neurotransmission.
 b. Neurohumoral transmission in autonomic nervous system (Detailed study about neurotransmitters- Adrenaline and Acetyl choline).
 c. Neurohumoral transmission in central nervous system (Detailed study about neurotransmitters- histamine, serotonin, dopamine, GABA, glutamate and glycine].
 d. Non adrenergic non cholinergic transmission (NANC). Co-transmission
Systemic Pharmacology
A detailed study on pathophysiology of diseases, mechanism of action, pharmacology and toxicology of existing as well as novel drugs used in the following systems
Autonomic Pharmacology
Parasympathomimetics and lytics, sympathomimetics and lytics, agents affecting neuromuscular junction

3 Central nervous system Pharmacology
General and local anesthetics
Sedatives and hypnotics, drugs used to treat anxiety.
Depression, psychosis, mania, epilepsy, neurodegenerative diseases.
Narcotic and non-narcotic analgesics.

4 Cardiovascular Pharmacology
Diuretics, antihypertensives, antiischemics, anti- arrhythmics, drugs for heart failure and hyperlipidemia.
Hematinics, coagulants , anticoagulants, fibrinolytics and anti-platelet drugs

5 Autocoid Pharmacology
The physiological and pathological role of Histamine, Serotonin, Hematinics Prostaglandins Opioid autocoids.
Pharmacology of antihistamines, 5HT antagonists.

REFERENCES
1. The Pharmacological Basis of Therapeutics, Goodman and Gillman's
3. Basic and Clinical Pharmacology by B.G Katzung
5. Applied biopharmaceutics and Pharmacokinetics by Leon Shargel and Andrew B.C.Yu.
7. Avery Drug Treatment
10. Robbins & Cortan Pathologic Basis of Disease, 9th Ed. (Robbins Pathology)
PHARMACOLOGICAL AND TOXICOLOGICAL SCREENING
METHODS - I
(MPL 103T)

Scope
This subject is designed to impart the knowledge on preclinical evaluation of
drugs and recent experimental techniques in the drug discovery and
development. The subject content helps the student to understand the
maintenance of laboratory animals as per the guidelines, basic knowledge of
various in-vitro and in-vivo preclinical evaluation processes

Objectives
Upon completion of the course the student shall be able to,
- Appraise the regulations and ethical requirement for the usage of
 experimental animals.
- Describe the various animals used in the drug discovery process and
good laboratory practices in maintenance and handling of experimental
animals
- Describe the various newer screening methods involved in the drug
discovery process
- Appreciate and correlate the preclinical data to humans

THEORY 60 Hrs

1. Laboratory Animals 12 Hrs
Common laboratory animals: Description, handling and applications of different species and strains of animals.

Transgenic animals: Production, maintenance and applications
Anaesthesia and euthanasia of experimental animals.
Maintenance and breeding of laboratory animals.
CPCSEA guidelines to conduct experiments on animals

Good laboratory practice.
Bioassay-Principle, scope and limitations and methods

2. Preclinical screening of new substances for the 12 Hrs
pharmacological activity using in vivo, in vitro, and other possible animal alternative models.
General principles of preclinical screening. CNS Pharmacology:
behavioral and muscle co ordination, CNS stimulants and

3 Preclinical screening of new substances for the pharmacological activity using in vivo, in vitro, and other possible animal alternative models.

4 Preclinical screening of new substances for the pharmacological activity using in vivo, in vitro, and other possible animal alternative models.

5 Preclinical screening of new substances for the pharmacological activity using in vivo, in vitro, and other possible animal alternative models.
immunomodulators, Immunosuppressants and immunostimulants

General principles of immunoassay: theoretical basis and optimization of immunoassay, heterogeneous and homogenous immunoassay systems. Immunoassay methods evaluation; protocol outline, objectives and preparation. Immunoassay for digoxin and insulin
Limitations of animal experimentation and alternate animal experiments.
Extrapolation of in vitro data to preclinical and preclinical to humans
REFERENCES
1. Biological standardization by J.H. Burn D.J. Finney and I.G. Goodwin
2. Screening methods in Pharmacology by Robert Turner. A
3. Evaluation of drugs activities by Laurence and Bachrach
5. Fundamentals of experimental Pharmacology by M.N.Ghosh
6. Pharmacological experiment on intact preparations by Churchill Livingstone
7. Drug discovery and Evaluation by Vogel H.G.
9. Preclinical evaluation of new drugs by S.K. Guta
10. Handbook of Experimental Pharmacology, SK.Kulkarni
14. Rodents for Pharmacological Experiments, Dr.Tapan Kumar chatterjee.
15. Practical Manual of Experimental and Clinical Pharmacology by Bikash Medhi (Author), Ajay Prakash (Author)
CELLULAR AND MOLECULAR PHARMACOLOGY
(MPL 104T)

Scope:
The subject imparts a fundamental knowledge on the structure and functions of cellular components and help to understand the interaction of these components with drugs. This information will further help the student to apply the knowledge in drug discovery process.

Objectives:
Upon completion of the course, the student shall be able to,
- Explain the receptor signal transduction processes.
- Explain the molecular pathways affected by drugs.
- Appreciate the applicability of molecular pharmacology and biomarkers in drug discovery process.
- Demonstrate molecular biology techniques as applicable for pharmacology

THEORY 60 Hrs
1. Cell biology
 Structure and functions of cell and its organelles
 Genome organization. Gene expression and its regulation, importance of siRNA and micro RNA, gene mapping and gene sequencing
 Cell cycles and its regulation.
 Cell death—events, regulators, intrinsic and extrinsic pathways of apoptosis.
 Necrosis and autophagy.
2. Cell signaling
 Intercellular and intracellular signaling pathways.
 Classification of receptor family and molecular structure ligand gated ion channels; G-protein coupled receptors, tyrosine kinase receptors and nuclear receptors.
 Secondary messengers: cyclic AMP, cyclic GMP, calcium ion, inositol 1,4,5-trisphosphate, (IP3), NO, and diacylglycerol.
 Detailed study of following intracellular signaling pathways: cyclic AMP signaling pathway, mitogen-activated protein kinase (MAPK) signaling, Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway.

218
3 Principles and applications of genomic and proteomic tools
DNA electrophoresis, PCR (reverse transcription and real time), Gene sequencing, micro array technique, SDS page, ELISA and western blotting,
Recombinant DNA technology and gene therapy
Basic principles of recombinant DNA technology-Restriction enzymes, various types of vectors. Applications of recombinant DNA technology.
Gene therapy- Various types of gene transfer techniques, clinical applications and recent advances in gene therapy.

4 Pharmacogenomics
Gene mapping and cloning of disease gene.
Genetic variation and its role in health/ pharmacology
Polymorphisms affecting drug metabolism
Genetic variation in drug transporters
Genetic variation in G protein coupled receptors
Applications of proteomics science: Genomics, proteomics, metabolomics, functionomics, nutrigenomics
Immunotherapeutics
Types of immunotherapeutics, humanisation antibody therapy, Immunotherapeutics in clinical practice

5 a. Cell culture techniques
Basic equipments used in cell culture lab. Cell culture media, various types of cell culture, general procedure for cell cultures; isolation of cells, subculture, cryopreservation, characterization of cells and their application.
Principles and applications of cell viability assays, glucose uptake assay, Calcium influx assays
Principles and applications of flow cytometry
b. Biosimilars

REFERENCES:
2. Pharmacogenomics: The Search for Individualized Therapies. Edited by J. Licinio and M -L. Wong
3. Handbook of Cell Signaling (Second Edition) Edited by Ralph A. et.al
4. Molecular Pharmacology: From DNA to Drug Discovery. John Dickenson et.al
5. Basic Cell Culture protocols by Cheril D.Helgason and Cindy L.Miller
6. Basic Cell Culture (Practical Approach) by J. M. Davis (Editor)
7. Animal Cell Culture: A Practical Approach by John R. Masters (Editor)
ADVANCED PHARMACOLOGY - II
(MPL 201T)

Scope
The subject is designed to strengthen the basic knowledge in the field of pharmacology and to impart recent advances in the drugs used for the treatment of various diseases. In addition, the subject helps the student to understand the concepts of drug action and mechanism involved.

Objectives
Upon completion of the course the student shall be able to:
- Explain the mechanism of drug actions at cellular and molecular level
- Discuss the Pathophysiology and pharmacotherapy of certain diseases
- Understand the adverse effects, contraindications and clinical uses of drugs used in treatment of diseases

THEORY 60 Hrs
1. Endocrine Pharmacology 12 Hrs
 Molecular and cellular mechanism of action of hormones such as growth hormone, prolactin, thyroid, insulin and sex hormones
 Anti-thyroid drugs, Oral hypoglycemic agents, Oral contraceptives, Corticosteroids.
 Drugs affecting calcium regulation

2. Chemotherapy 12 Hrs
 Cellular and molecular mechanism of actions and resistance of antimicrobial agents
 such as β-lactams, aminoglycosides, quinolones, Macrolide antibiotics. Antifungal, antiviral, and anti-TB drugs.

3. Chemotherapy 12 Hrs
 Drugs used in Protozoal Infections
 Drugs used in the treatment of Helminthiasis
 Chemotherapy of cancer
 Immunopharmacology
 Cellular and biochemical mediators of inflammation and immune response. Allergic or hypersensitivity reactions. Pharmacotherapy of asthma and COPD.
 Immunosuppressants and Immunostimulants

222
REFERENCES
1. The Pharmacological basis of therapeutics- Goodman and Gill man's
3. Basic and Clinical Pharmacology by B.G -Katzung
7. Applied biopharmaceutics and Pharmacokinetics by Leon Shargel and Andrew B.C.Yu.
8. Handbook of Essential Pharmacokinetics, Pharmacodynamics and Drug Metabolism for Industrial Scientists
9. Robbins & Cortan Pathologic Basis of Disease, 9th Ed. (Robbins Pathology)
11. KD.Tripathi. Essentials of Medical Pharmacology
PHARMACOLOGICAL AND TOXICOLOGICAL SCREENING
METHODS-II
(MPL 202T)

Scope:
This subject imparts knowledge on the preclinical safety and toxicological evaluation of drug & new chemical entity. This knowledge will make the student competent in regulatory toxicological evaluation.

Objectives:
Upon completion of the course, the student shall be able to,
 • Explain the various types of toxicity studies.
 • Appreciate the importance of ethical and regulatory requirements for toxicity studies.
 • Demonstrate the practical skills required to conduct the preclinical toxicity studies.

THEORY 60 Hrs
1. Basic definition and types of toxicology (general, mechanistic, regulatory and descriptive) 12 Hrs
 Regulatory guidelines for conducting toxicity studies OECD, ICH, EPA and Schedule Y
 OECD principles of Good laboratory practice (GLP)
 History, concept and its importance in drug development

2. Acute, sub-acute and chronic- oral, dermal and inhalational studies as per OECD guidelines. 12 Hrs
 Acute eye irritation, skin sensitization, dermal irritation & dermal toxicity studies.
 Test item characterization- importance and methods in regulatory toxicology studies

3. Reproductive toxicology studies, Male reproductive toxicity studies, female reproductive studies (segment I and segment III), teratogenecity studies (segment II)
 Genotoxicity studies (Ames Test, in vitro and in vivo Micronucleus and Chromosomal aberrations studies)
 In vivo carcinogenicity studies

4. IND enabling studies (IND studies)- Definition of IND, importance of IND, industry perspective, list of studies needed for IND submission.

224
Safety pharmacology studies- origin, concepts and importance of safety pharmacology.
Tier1- CVS, CNS and respiratory safety pharmacology, HERG assay. Tier2- GI, renal and other studies

5 Toxicokinetics- Toxicokinetic evaluation in preclinical studies, 12 saturation kinetics Importance and applications of toxicokinetic Hrs studies. Alternative methods to animal toxicity testing.

REFERENCES
3. Drugs from discovery to approval by Rick NG.
5. OECD test guidelines.
PRINCIPLES OF DRUG DISCOVERY
(MPL 203T)

Scope:
The subject imparts basic knowledge of drug discovery process. This information will make the student competent in drug discovery process

Objectives:
Upon completion of the course, the student shall be able to,
- Explain the various stages of drug discovery.
- Appreciate the importance of the role of genomics, proteomics and bioinformatics in drug discovery
- Explain various targets for drug discovery.
- Explain various lead seeking method and lead optimization
- Appreciate the importance of the role of computer aided drug design in drug discovery

THEORY

 Target Discovery and validation - Role of Genomics, Proteomics and Bioinformatics. Role of Nucleic acid microarrays, Protein microarrays, Antisense technologies, siRNAs, antisense oligonucleotides, Zinc finger proteins. Role of transgenic animals in target validation.
 Lead Identification - combinatorial chemistry & high throughput screening, in silico lead discovery techniques, Assay development for hit identification.

 Protein structure
 Levels of protein structure, Domains, motifs, and folds in protein structure. Computational prediction of protein structure: Threading and homology modeling methods. Application of NMR and X-ray crystallography in protein structure prediction

2. Rational Drug Design

60 Hrs

12 Hrs

12 Hrs

12 Hrs

226
Virtual Screening techniques: Drug likeness screening, Concept of pharmacophore mapping and pharmacophore based Screening,

5 QSAR Statistical methods – regression analysis, partial least square analysis (PLS) and other multivariate statistical methods. Hrs 3D-QSAR approaches like COMFA and COMSIA Prodrug design-Basic concept, Prodrugs to improve patient acceptability, Drug solubility, Drug absorption and distribution, site specific drug delivery and sustained drug action. Rationale of prodrug design and practical consideration of prodrug design

REFERENCES
2. Darryl León. Scott Markelln. Silico Technologies in Drug Target Identification and Validation. 2006 by Taylor and Francis Group, LLC.
CLINICAL RESEARCH AND PHARMACOVIGILANCE
(MPL 204T)

Scope:
This subject will provide a value addition and current requirement for the students in clinical research and pharmacovigilance. It will teach the students on conceptualizing, designing, conducting, managing and reporting of clinical trials. This subject also focuses on global scenario of Pharmacovigilance in different methods that can be used to generate safety data. It will teach the students in developing drug safety data in Pre-clinical, Clinical phases of Drug development and post market surveillance.

Objectives:
Upon completion of the course, the student shall be able to,
• Explain the regulatory requirements for conducting clinical trial
• Demonstrate the types of clinical trial designs
• Explain the responsibilities of key players involved in clinical trials
• Execute safety monitoring, reporting and close-out activities
• Explain the principles of Pharmacovigilance
• Detect new adverse drug reactions and their assessment
• Perform the adverse drug reaction reporting systems and communication in Pharmacovigilance

THEORY 60 Hrs
1. Regulatory Perspectives of Clinical Trials: 12 Hrs
 Origin and Principles of International Conference on Harmonsation - Good Clinical Practice (ICH-GCP) guidelines
 Ethical Committee: Institutional Review Board, Ethical Guidelines for Biomedical Research and Human Participant-Schedule Y, ICMR
 Informed Consent Process: Structure and content of an Informed Consent Process Ethical principles governing informed consent process
2. Clinical Trials: Types and Design 12 Hrs
 Experimental Study- RCT and Non RCT,
 Observation Study: Cohort, Case Control, Cross sectional
Clinical Trial Study Team
 Roles and responsibilities of Clinical Trial Personnel: Investigator, Study Coordinator, Sponsor, Contract Research Organization and its management
3 Clinical Trial Documentation- Guidelines to the preparation of
documents, Preparation of protocol, Investigator Brochure, Case
Report Forms, Clinical Study Report Clinical Trial Monitoring-
Safety Monitoring in CT
Adverse Drug Reactions: Definition and types. Detection and
reporting methods. Severity and seriousness
assessment. Predictability and preventability assessment,
Management of adverse drug reactions; Terminologies of ADR.

4 Basic aspects, terminologies and establishment of
pharmacovigilance
History and progress of pharmacovigilance, Significance of safety
monitoring, Pharmacovigilance in India and international aspects,
WHO international drug monitoring programme, WHO and
Regulatory terminologies of ADR, evaluation of medication safety,
Establishing pharmacovigilance centres in Hospitals, Industry and
National programmes related to pharmacovigilance. Roles and
responsibilities in Pharmacovigilance

5 Methods, ADR reporting and tools used in
Pharmacovigilance
International classification of diseases, International Non-
proprietary names for drugs, Passive and Active surveillance,
Comparative observational studies, Targeted clinical investigations
and Vaccine safety surveillance. Spontaneous reporting system
and Reporting to regulatory authorities, Guidelines for ADRs
reporting. Argus, Aris G Pharmacovigilance, VigiFlow, Statistical
methods for evaluating medication safety data.

6 Pharmacoeconomics, safety
pharmacology

REFERENCES
1. Central Drugs Standard Control Organization- Good Clinical Practices,
Guidelines for Clinical Trials on Pharmaceutical Products in India. New
2. International Conference on Harmonization of Technical requirements for
registration of Pharmaceuticals for human use. ICH Harmonized Tripartite

229
Semester III
MRM 301T - Research Methodology & Biostatistics

UNIT – I
General Research Methodology: Research, objective, requirements, practical difficulties, review of literature, study design, types of studies, strategies to eliminate errors/bias, controls, randomization, crossover design, placebo, blinding techniques.

UNIT – II
Biostatistics: Definition, application, sample size, importance of sample size, factors influencing sample size, dropouts, statistical tests of significance, type of significance tests, parametric tests (students “t” test, ANOVA, Correlation coefficient, regression), non-parametric tests (wilcoxon rank tests, analysis of variance, correlation, chi square test), null hypothesis, P values, degree of freedom, interpretation of P values.

UNIT – III
Medical Research: History, values in medical ethics, autonomy, beneficence, non-maleficence, double effect, conflicts between autonomy and beneficence/non-maleficence, euthanasia, informed consent, confidentiality, criticisms of orthodox medical ethics, importance of communication, control resolution, guidelines, ethics committees, cultural concerns, truth telling, online business practices, conflicts of interest, referral, vendor relationships, treatment of family members, sexual relationships, fatality.

UNIT – IV
CPCSEA guidelines for laboratory animal facility: Goals, veterinary care, quarantine, surveillance, diagnosis, treatment and control of disease, personal hygiene, location of animal facilities to laboratories, anesthesia, euthanasia, physical facilities, environment, animal husbandry, record keeping, SOPs, personnel and training, transport of lab animals.

UNIT – V
Declaration of Helsinki: History, introduction, basic principles for all medical research, and additional principles for medical research combined with medical care.