PHARMACOGNOSY (MPG)

MODERN PHARMACEUTICAL ANALYTICAL TECHNIQUES
(MPG 101T)

Scope
This subject deals with various advanced analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are NMR, Mass spectrometer, IR, HPLC, GC etc.

Objectives
After completion of course student is able to know,
- The analysis of various drugs in single and combination dosage forms
- Theoretical and practical skills of the instruments

THEORY

 IR spectroscopy: Theory, Modes of Molecular vibrations, Sample handling, Instrumentation of Dispersive and Fourier - Transform IR Spectrometer, Factors affecting vibrational frequencies and Applications of IR spectroscopy
 Spectrofluorimetry: Theory of Fluorescence, Factors affecting fluorescence, Quenchers, Instrumentation and Applications of fluorescence spectrophotometer.
 Flame emission spectroscopy and Atomic absorption spectroscopy: Principle, Instrumentation, Interferences and Applications.

2. NMR spectroscopy: Quantum numbers and their role in NMR, Principle, Instrumentation, Solvent requirement in NMR, Relaxation process, NMR signals in various compounds, Chemical shift, Factors influencing chemical shift, Spin-Spin coupling, Coupling constant, Nuclear magnetic double resonance, Brief outline of principles of FT-NMR and 13C NMR. Applications of NMR spectroscopy.

4 Chromatography: Principle, apparatus, instrumentation, chromatographic parameters, factors affecting resolution, isolation of drug from excipients, data interpretation and applications of the following:
 a) Thin Layer chromatography
 b) High Performance Thin Layer Chromatography
 c) Ion exchange chromatography
 d) Column chromatography
 e) Gas chromatography
 f) High Performance Liquid chromatography
 g) Ultra High Performance Liquid chromatography
 h) Affinity chromatography
 i) Gel Chromatography

5 Electrophoresis: Principle, Instrumentation, Working conditions, factors affecting separation and applications of the following:
 a) Paper electrophoresis
 b) Gel electrophoresis
 c) Capillary electrophoresis
 d) Zone electrophoresis
 e) Moving boundary electrophoresis
 f) Iso electric focusing

X ray Crystallography: Production of X rays, Different X ray methods, Bragg’s law, Rotating crystal technique, X ray powder technique, Types of crystals and applications of X-ray diffraction.

Thermal Techniques: Principle, thermal transitions and Instrumentation (Heat flux and power-compensation and designs), Modulated DSC, Hyper DSC, experimental parameters (sample preparation, experimental conditions, calibration, heating and
cooling rates, resolution, source of errors) and their influence, advantage and disadvantages, pharmaceutical applications. Differential Thermal Analysis (DTA): Principle, instrumentation and advantage and disadvantages, pharmaceutical applications, derivative differential thermal analysis (DDTA). TGA: Principle, instrumentation, factors affecting results, advantage and disadvantages, pharmaceutical applications.

REFERENCES
ADVANCED PHARMACOGNOSY - I
(MPG 102T)

SCOPE
To learn and understand the advances in the field of cultivation and isolation of drugs of natural origin, various phytopharmaceuticals, nutraceuticals and their medicinal use and health benefits.

OBJECTIVES
Upon completion of the course, the student shall be able to know the,
• advances in the cultivation and production of drugs
• various phyto-pharmaceuticals and their source, its utilization and medicinal value.
• various nutraceuticals/herbs and their health benefits
• Drugs of marine origin
• Pharmacovigilance of drugs of natural origin

THEORY

2. Marine natural products: General methods of isolation and purification, Study of Marine toxins, Recent advances in research in marine drugs, Problems faced in research on marine drugs such as taxonomical identification, chemical screening and their solution.

3. Nutraceuticals: Current trends and future scope, Inorganic mineral supplements, Vitamin supplements, Digestive enzymes, Dietary fibres, Cereals and grains, Health drinks of natural origin, Antioxidants, Polyunsaturated fatty acids, Herbs as functional foods, Formulation and standardization of nutraceuticals, Regulatory aspects, FSSAI guidelines, Sources, name of marker compounds and their chemical nature, medicinal uses and health benefits of following

235
4 Phytopharmaceuticals: Occurrence, isolation and characteristic features (Chemical nature, uses in pharmacy, medicinal and health benefits) of following.
 a) Carotenoids – i) α and β - Carotene ii) Xanthophyll (Lutein)
 b) Limonoids – i) d-Limonene ii) α – Terpineol
 c) Saponins – i) Shatavarins
 d) Flavonoids – i) Resveratrol ii) Rutin iii) Hesperidin iv) Naringin v) Quercetin
 e) Phenolic acids- Ellagic acid
 f) Vitamins
 g) Tocotrienols and Tocopherols
 h) Andrographolide, Glycolipids, Gugulipids, Withanolides, Vascine, Taxol
 i) Miscellaneous

5 Pharmacovigilance of drugs of natural origin: WHO and AYUSH guidelines for safety monitoring of natural medicine, Spontaneous reporting schemes for biodrug adverse reactions, bio drug-drug and bio drug-food interactions with suitable examples.

REFERENCES (Latest Editions of)
2. Pharmacognosy-Tyler, Brady, Robbers
3. Modern Methods of Plant Analysis- Peach & M.V. Tracey, Vol. I&II
4. Text Book of Pharmacognosy by T.E. Wallis
5. Marine Natural Products-Vol.I to IV.
PHYTOCHEMISTRY
(MPG 103T)

SCOPE
Students shall be equipped with the knowledge of natural product drug discovery and will be able to isolate, identify and extract and the phyto-constituents

OBJECTIVES
Upon completion of the course, the student shall be able to know the,

- different classes of phytoconstituents, their biosynthetic pathways, their properties, extraction and general process of natural product drug discovery
- phytochemical fingerprinting and structure elucidation of phytoconstituents.

THEORY

1. Biosynthetic pathways and Radio tracing techniques: 12 Hrs
 Constituents & their Biosynthesis, Isolation, Characterization and purification with a special reference to their importance in herbal industries of following phyto-pharmaceuticals containing drugs:
 a) Alkaloids: Ephedrine, Quinine, Strychnine, Piperine, Berberine, Taxol, Vinca alkooloids.
 b) Glycosides: Digitoxin, Glycyrrhizin, Sennosides, Bacosides, Quercitin.
 c) Steroids: Hecogenin, guggulostereone and withanolides
 d) Coumarin: Umbelliferone.
 e) Terpenoids: Cucurbitacin

2. Drug discovery and development: History of herbs as source of drugs and drug discovery, the lead structure selection process, structure development, product discovery process and drug registration, Selection and optimization of lead compounds with suitable examples from the following source: artemesin, andrographolides. Clinical studies emphasising on phases of clinical trials, protocol design for lead molecules.

3. Extraction and Phytochemical studies: Recent advances in extractions with emphasis on selection of method and choice of solvent for extraction, successive and exhaustive extraction and other methods of extraction commonly used like microwave
assisted extraction, Methods of fractionation. Separation of phytoconstituents by latest CCCET, SCFE techniques including preparative HPLC and Flash column chromatography.

4 Phytochemical finger printing: HPTLC and LCMS/GCMS applications in the characterization of herbal extracts. Structure elucidation of phytoconstituents.

5 Structure elucidation of the following compounds by spectroscopic techniques like UV, IR, MS, NMR (1H, 13C) Hrs
 a. Carvone, Citral, Menthol
 b. Luteolin, Kaempferol
 c. Nicotine, Caffeine iv) Glycyrrhizin.

REFERENCES (Latest Editions of)
1. Organic chemistry by I.L. Finar Vol.II
2. Pharmacognosy by Trease and Evans, ELBS.
3. Pharmacognosy by Tylor and Brady.
5. Clark's isolation and Identification of drugs by A.C. Mottal.
9. Natural Products Chemistry Practical Manual by Anees A Siddiqui and Seemi Siddiqui
11. Chemistry of Natural Products- Vol. 1 onwards IWPAC.
12. Modem Methods of Plant Analysis- Peach & M.V. Tracey, Vol. I&II
INDUSTRIAL PHARMACOGNOSTICAL TECHNOLOGY
(MPG 104T)

SCOPE
To understand the Industrial and commercial potential of drugs of natural origin, integrate traditional Indian systems of medicine with modern medicine and also to know regulatory and quality policy for the trade of herbals and drugs of natural origin.

OBJECTIVES
By the end of the course the student shall be able to know,
- the requirements for setting up the herbal/natural drug industry.
- the guidelines for quality of herbal/natural medicines and regulatory issues.
- the patenting/IPR of herbals/natural drugs and trade of raw and finished materials.

THEORY 60 Hrs

4 Testing of natural products and drugs: Herbal medicines - clinical laboratory testing. Stability testing of natural products, Hrs protocols.

5 Patents: Indian and international patent laws, proposed amendments as applicable to herbal/natural products and Hrs process. Geographical indication, Copyright, Patentable subject matters, novelty, non obviousness, utility, enablement and best mode, procedure for Indian patent filing, patent processing, grant of patents, rights of patents, cases of patents, opposition and revocation of patents, patent search and literature, Controllers of patents.

REFERENCES (Latest Editions of)
5. Indian Herbal Pharmacopoeia (2002), IDMA, Mumbai.
MEDICINAL PLANT BIOTECHNOLOGY
(MPG 201T)

SCOPE
To explore the knowledge of Biotechnology and its application in the improvement of quality of medicinal plants

OBJECTIVES
Upon completion of the course, the student shall be able to,
• Know the process like genetic engineering in medicinal plants for higher yield of Phytopharmaceuticals.
• Use the biotechnological techniques for obtaining and improving the quality of natural products/medicinal plants

THEORY 60 Hrs
1. Introduction to Plant biotechnology: Historical perspectives, prospects for development of plant biotechnology as a source of medicinal agents. Applications in pharmacy and allied fields. Genetic and molecular biology as applied to pharmacognosy, study of DNA, RNA and protein replication, genetic code, regulation of gene expression, structure and complicity of genome, cell signaling, DNA recombinant technology.

2 Different tissue culture techniques: Organogenesis and embryogenesis, synthetic seed and monoclonal variation, Protoplast fusion, Hairy root multiple shoot cultures and their applications. Micro propagation of medicinal and aromatic plants. Sterilization methods involved in tissue culture, gene transfer in plants and their applications.

4 Biotransformation and Transgenesis: Biotransformation, bioreactors for pilot and large scale cultures of plant cells and retention of biosynthetic potential in cell culture. Transgenic
plants, methods used in gene identification, localization and sequencing of genes. Application of PCR in plant genome analysis.

5 Fermentation technology: Application of Fermentation technology, Production of ergot alkaloids, single cell proteins, Hrs enzymes of pharmaceutical interest.

REFERENCES (Latest Editions of)
9. Plant tissue culture by Street.
12. Biotechnological applications to tissue culture by Shargool, Peter D, Shargool, CKC Press.
13. Pharmacognosy by Varo E. Tyler, Lynn R. Brady and James E. Robberrt, That Tjen, NGO.

244
ADVANCED PHARMACOGNOSY - II
(MPG 202T)

SCOPE
To know and understand the Adulteration and Deterioration that occurs in herbal/natural drugs and methods of detection of the same. Study of herbal remedies and their validations, including methods of screening.

OBJECTIVES
Upon completion of the course, the student shall be able to know the,
- validation of herbal remedies
- methods of detection of adulteration and evaluation techniques for the herbal drugs
- methods of screening of herbals for various biological properties

THEORY

<table>
<thead>
<tr>
<th>Topic</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Herbal remedies – Toxicity and Regulations: Herbals vs Conventional drugs, Efficacy of Herbal medicine products, Validation of herbal therapies, Pharmacodynamic and Pharmacokinetic issues.</td>
<td>12 Hrs</td>
</tr>
<tr>
<td>4. Analytical Profiles of herbal drugs: Andrographis paniculata, Boswellia serata, Coleus forskholii, Curcuma longa, Embelica officinalis, Psoralea corylifolia.</td>
<td>12 Hrs</td>
</tr>
<tr>
<td>5. Biological screening of herbal drugs: Introduction and Need for Phyto-Pharmacological Screening, New Strategies for evaluating</td>
<td>12 Hrs</td>
</tr>
</tbody>
</table>
Natural Products, In vitro evaluation techniques for Antioxidants, Antimicrobial and Anticancer drugs. In vivo evaluation techniques for Anti-inflammatory, Antiulcer, Anticancer, Wound healing, Antidiabetic, Hepatoprotective, Cardio protective, Diuretics and Antifertility, Toxicity studies as per OECD guidelines.

REFERENCES (Latest Editions of)
10. Indian Herbal Pharmacopoeia, IDMA, Mumbai.
INDIAN SYSTEMS OF MEDICINE
(MPG 203T)

SCOPE
To make the students understand thoroughly the principles, preparations of medicines of various Indian systems of medicine like Ayurveda, Siddha, Homeopathy and Unani. Also focusing on clinical research of traditional medicines, quality assurance and challenges in monitoring the safety of herbal medicines.

OBJECTIVES
After completion of the course, student is able to
- To understand the basic principles of various Indian systems of medicine
- To know the clinical research of traditional medicines, Current Good Manufacturing Practice of Indian systems of medicine and their formulations.

THEORY 60 Hrs
1. Fundamental concepts of Ayurveda, Siddha, Unani and Homoeopathy systems of medicine
 Different dosage forms of the ISM.
 Ayurveda: Ayurvedic Pharmacopoeia, Analysis of formulations and bio crude drugs with references to: Identity, purity and quality.
 Siddha: Gunapadam (Siddha Pharmacology), raw drugs/Dhatu/Jeevam in Siddha system of medicine, Purification process (Suddhi).

2. Naturopathy, Yoga and Aromatherapy practices
 a) Naturopathy - Introduction, basic principles and treatment modalities.
 b) Yoga - Introduction and Streams of Yoga. Asanas, Pranayama, Meditations and Relaxation techniques.
 c) Aromatherapy – Introduction, aroma oils for common problems, carrier oils.

3. Formulation development of various systems of medicine
 Salient features of the techniques of preparation of some of the important class of Formulations as per Ayurveda, Siddha, Homeopathy and Unani Pharmacopoeia and texts. Standardization, Shelf life and Stability studies of ISM formulations.
4 Schedule T – Good Manufacturing Practice of Indian systems of medicine
Components of GMP (Schedule - T) and its objectives, Infrastructural requirements, working space, storage area, machinery and equipments, standard operating procedures, health and hygiene, documentation and records.
Quality assurance in ISM formulation industry - GAP, GMP and GLP. Preparation of documents for new drug application and export registration.
Challenges in monitoring the safety of herbal medicines: Regulation, quality assurance and control, National/Regional Pharmacopoeias.

5 TKDL, Geographical indication Bill, Government bills in AYUSH, ISM, CCRAS, CCRS, CCRH, CCRU

REFERENCES (Latest Editions of)
3. Ayurvedic System of Medicine, Kaviraj Nagendranath Sengupata, Sri Satguru Publications, New Delhi.
7. Indian Herbal Pharmacopoeia, IDMA, Mumbai.
8. British Herbal Pharmacopoeia, bRITISH Herbal Medicine Association, UK.
10. Indian System of Medicine and Homeopathy in India, Planning and Evaluation Cell, Govt. of India, New Delhi.
11. Essential of Food and Nutrition, Swaminathan, Bappco, Bangalore.
HERBAL COSMETICS
(MPG 204T)

SCOPE
This subject deals with the study of preparation and standardization of herbal/natural cosmetics. This subject gives emphasis to various national and international standards prescribed regarding herbal cosmeceuticals.

OBJECTIVES
After completion of the course, student shall be able to,
• understand the basic principles of various herbal/natural cosmetic preparations
• current Good Manufacturing Practices of herbal/natural cosmetics as per the regulatory authorities

THEORY

1. Introduction: Herbal/natural cosmetics, Classification & Economic aspects.
 Regulatory Provisions relation to manufacture of cosmetics: - License, GMP, offences & Penalties, Import & Export of Herbal/natural cosmetics, Industries involved in the production of Herbal/natural cosmetics. 12 Hrs

2 Commonly used herbal cosmetics, raw materials, preservatives, surfactants, humectants, oils, colors, and some functional herbs, preformulation studies, compatibility studies, possible interactions between chemicals and herbs, design of herbal cosmetic formulation. 12 Hrs

3 Herbal Cosmetics : Physiology and chemistry of skin and pigmentation, hairs, scalp, lips and nail, Cleansing cream, Lotions, Face powders, Face packs, Lipsticks, Bath products, soaps and baby product, Preparation and standardisation of the following:
 Tonic, Bleaches, Dentifrices and Mouth washes & Tooth Pastes, Cosmetics for Nails. 12 Hrs

4 Cosmeceuticals of herbal and natural origin: Hair growth formulations, Shampoos, Conditioners, Colorants & hair oils, Fairness formulations, vanishing & foundation creams, anti-sun burn preparations, moisturizing creams, deodorants. 12 Hrs
Semester III
MRM 301T - Research Methodology & Biostatistics

UNIT – I
General Research Methodology: Research, objective, requirements, practical difficulties, review of literature, study design, types of studies, strategies to eliminate errors/bias, controls, randomization, crossover design, placebo, blinding techniques.

UNIT – II
Biostatistics: Definition, application, sample size, importance of sample size, factors influencing sample size, dropouts, statistical tests of significance, type of significance tests, parametric tests (students “t” test, ANOVA, Correlation coefficient, regression), non-parametric tests (wilcoxon rank tests, analysis of variance, correlation, chi square test), null hypothesis, P values, degree of freedom, interpretation of P values.

UNIT – III
Medical Research: History, values in medical ethics, autonomy, beneficence, non-maleficence, double effect, conflicts between autonomy and beneficence/non-maleficence, euthanasia, informed consent, confidentiality, criticisms of orthodox medical ethics, importance of communication, control resolution, guidelines, ethics committees, cultural concerns, truth telling, online business practices, conflicts of interest, referral, vendor relationships, treatment of family members, sexual relationships, fatality.

UNIT – IV
CPCSEA guidelines for laboratory animal facility: Goals, veterinary care, quarantine, surveillance, diagnosis, treatment and control of disease, personal hygiene, location of animal facilities to laboratories, anesthesia, euthanasia, physical facilities, environment, animal husbandry, record keeping, SOPs, personnel and training, transport of lab animals.

UNIT – V
Declaration of Helsinki: History, introduction, basic principles for all medical research, and additional principles for medical research combined with medical care.