PHARMACEUTICS(MPH)

MODERN PHARMACEUTICAL ANALYTICAL TECHNIQUES
(MPH 101T)

Scope
This subject deals with various advanced analytical instrumental techniques for identification, characterization and quantification of drugs. Instruments dealt are NMR, Mass spectrometer, IR, HPLC, GC etc.

Objectives
After completion of course student is able to know,
- Chemicals and Excipients
- The analysis of various drugs in single and combination dosage forms
- Theoretical and practical skills of the instruments

THEORY 60 HOURS

b. IR spectroscopy: Theory, Modes of Molecular vibrations, Sample handling, Instrumentation of Dispersive and Fourier Transform IR Spectrometer, Factors affecting vibrational frequencies and Applications of IR spectroscopy

2. NMR spectroscopy: Quantum numbers and their role in NMR, Principle, Instrumentation, Solvent requirement in NMR, Hrs Relaxation process, NMR signals in various compounds, Chemical shift, Factors influencing chemical shift, Spin-Spin coupling, Coupling constant, Nuclear magnetic double resonance, Brief outline of principles of FT-NMR and 13C NMR. Applications of NMR spectroscopy.

4 Chromatography: Principle, apparatus, instrumentation, chromatographic parameters, factors affecting resolution and applications of the following:
 a) Paper chromatography b) Thin Layer chromatography
 c) Ion exchange chromatography d) Column chromatography
 e) Gas chromatography f) High Performance Liquid chromatography
 g) Affinity chromatography

5 a. Electrophoresis: Principle, Instrumentation, Working conditions, factors affecting separation and applications of the following:
 a) Paper electrophoresis b) Gel electrophoresis c) Capillary electrophoresis d) Zone electrophoresis e) Moving boundary electrophoresis f) Iso electric focusing
 b. X ray Crystallography: Production of X rays, Different X ray diffraction methods, Bragg’s law, Rotating crystal technique, X ray powder technique, Types of crystals and applications of X-ray diffraction.

6 Immunological assays: RIA (Radio immuno assay), ELISA, Bioluminescence assays.

REFERENCES
DRUG DELIVERY SYSTEMS
(MPH 102T)

SCOPE
This course is designed to impart knowledge on the area of advances in novel drug delivery systems.

OBJECTIVES
Upon completion of the course, student shall be able to understand
 The various approaches for development of novel drug delivery systems.
 The criteria for selection of drugs and polymers for the development of delivering system
 The formulation and evaluation of Novel drug delivery systems.

THEORY

4 Occular Drug Delivery Systems: Barriers of drug permeation, Methods to overcome barriers.

60 Hrs

10 Hrs

10 Hrs

10 Hrs

06 Hrs

39
5 Transdermal Drug Delivery Systems: Structure of skin and barriers, Penetration enhancers, Transdermal Drug Delivery Systems, Formulation and evaluation. 10 Hrs
6 Protein and Peptide Delivery: Barriers for protein delivery. Formulation and Evaluation of delivery systems of proteins and other macromolecules. 08 Hrs
7 Vaccine delivery systems: Vaccines, uptake of antigens, single shot vaccines, mucosal and transdermal delivery of vaccines. 06 Hrs

REFERENCES
3. Encyclopedia of controlled delivery, Editor- Edith Mathiowitz, Published by WileyInterscience Publication, John Wiley and Sons, Inc, New York! Chichester/Weinheim
5. S.P.Vyas and R.K.Khar, Controlled Drug Delivery - concepts and advances, Vallabh Prakashan, New Delhi, First edition 2002

JOURNALS
1. Indian Journal of Pharmaceutical Sciences (IPA)
2. Indian drugs (IDMA)
3. Journal of controlled release (Elsevier Sciences) desirable
4. Drug Development and Industrial Pharmacy (Marcel & Decker) desirable
MODERN PHARMACEUTICS
(MPH 103T)

Scope
Course designed to impart advanced knowledge and skills required to learn various aspects and concepts at pharmaceutical industries

Objectives
Upon completion of the course, student shall be able to understand
- The elements of preformulation studies.
- The Active Pharmaceutical Ingredients and Generic drug Product development
- Industrial Management and GMP Considerations.
- Optimization Techniques & Pilot Plant Scale Up Techniques
- Stability Testing, sterilization process & packaging of dosage forms.

THEORY

b. Optimization techniques in Pharmaceutical Formulation: Concept and parameters of optimization, Optimization techniques in pharmaceutical formulation and processing. Statistical design, Response surface method, Contour designs, Factorial designs and application in formulation

3 cGMP & Industrial Management: Objectives and policies of current good manufacturing practices, layout of buildings, services, equipments and their maintenance Production management: Production organization, , materials management, handling and transportation, inventory management and control, production and planning control, Sales forecasting, budget and cost control, industrial and personal relationship. Concept of Total Quality Management.
4 Compression and compaction: Physics of tablet compression, consolidation, effect of friction, distribution of forces, compaction profiles. Solubility.
5 Study of consolidation parameters; Diffusion parameters, Dissolution parameters and Pharmacokinetic parameters, Heckel plots, Similarity factors – f2 and f1, Higuchi and Peppas plot, Linearity Concept of significance, Standard deviation, Chi square test, students T-test, ANOVA test.

REFERENCES
1. Theory and Practice of Industrial Pharmacy By Lachmann and Libermann
3. Pharmaceutical Dosage forms: Disperse systems, Vol, 1-2; By Leon Lachmann.
4. Pharmaceutical Dosage forms: Parenteral medications Vol. 1-2; By Leon Lachmann.
5. Modern Pharmacetics; By Gillbert and S. Banker.
8. Physical Pharmacy; By Alfred martin
11. Quality Assurance Guide; By Organization of Pharmaceutical producers of India.
13. How to practice GMPs; By P.P.Sharma. Vandhana Publications, Agra.
15. Pharmaceutical Preformulations; By J.J. Wells.
16. Applied production and operations management; By Evans, Anderson, Sweeney and Williams.
17. Encyclopaedia of Pharmaceutical technology, Vol I – III.
REGULATORY AFFAIRS
(MPH 104T)

Scope
Course designed to impart advanced knowledge and skills required to learn the concept of generic drug and their development, various regulatory filings in different countries, different phases of clinical trials and submitting regulatory documents: filing process of IND, NDA and ANDA
- To know the approval process of
- To know the chemistry, manufacturing controls and their regulatory importance
- To learn the documentation requirements for
- To learn the importance and

Objectives:
Upon completion of the course, it is expected that the students will be able to understand
- The Concepts of innovator and generic drugs, drug development process
- The Regulatory guidance's and guidelines for filing and approval process
- Preparation of Dossiers and their submission to regulatory agencies in different countries
- Post approval regulatory requirements for actives and drug products
- Submission of global documents in CTD, eCTD formats
- Clinical trials requirements for approvals for conducting clinical trials
- Pharmacovigilence and process of monitoring in clinical trials.

THEORY 60 Hrs

1. a. Documentation in Pharmaceutical industry: Master formula record, DMF (Drug Master File), distribution records. Generic drugs product development Introduction, Hatch-Waxman act and amendments, CFR (CODE OF FEDERAL REGULATION) drug product performance, in-vitro, ANDA regulatory approval process, NDA approval process, BE and drug product assessment, in-vivo, scale up process approval changes, post marketing surveillance, outsourcing BA and BE to CRO.
 b. Regulatory requirement for product approval: API, biologics, novel, therapies obtaining NDA, ANDA for generic drugs ways and means of US registration for foreign drugs

43
2. CMC, post approval regulatory affairs. Regulation for combination products and medical devices. CTD and ECTD format, industry and FDA liaison. ICH - Guidelines of ICH-Q, S E, M. Regulatory requirements of EU, MHRA, TGA and ROW countries.

3. Non clinical drug development: Global submission of IND, NDA, ANDA. Investigation of medicinal products dossier, dossier (IMPD) and investigator brochure (IB).

REFERENCES
7. www.ich.org/
8. www.fda.gov/
9. europa.eu/index_en.htm
MOLECULAR PHARMACEUTICS (NANO TECHNOLOGY & TARGETED DDS) (NTDS) (MPH 201T)

Scope
This course is designed to impart knowledge on the area of advances in novel drug delivery systems.

Objectives
Upon completion of the course student shall be able to understand
- The various approaches for development of novel drug delivery systems.
- The criteria for selection of drugs and polymers for the development of NTDS
- The formulation and evaluation of novel drug delivery systems.

THEORY 60 Hrs
1. Targeted Drug Delivery Systems: Concepts, Events and biological process involved in drug targeting. Tumor targeting and Brain specific delivery. 12 Hrs
3. Micro Capsules / Micro Spheres: Types, preparation and evaluation, Monoclonal Antibodies; preparation and application, preparation and application of Niosomes, Aquasomes, Phytosomes, Electrosomes. 12 Hrs
4. Pulmonary Drug Delivery Systems: Aerosols, propellents, ContainersTypes, preparation and evaluation, Intra Nasal Route Delivery systems; Types, preparation and evaluation. 12 Hrs

REFERENCES
ADVANCED BIOPHARMACEUTICS & PHARMACOKINETICS
(MPH 202T)

Scope
This course is designed to impart knowledge and skills necessary for dose calculations, dose adjustments and to apply biopharmaceutics theories in practical problem solving. Basic theoretical discussions of the principles of biopharmaceutics and pharmacokinetics are provided to help the students' to clarify the concepts.

Objectives
Upon completion of this course it is expected that students will be able understand,

- The basic concepts in biopharmaceutics and pharmacokinetics.
- The use raw data and derive the pharmacokinetic models and parameters the best describe the process of drug absorption, distribution, metabolism and elimination.
- The critical evaluation of biopharmaceutic studies involving drug product equivalency.
- The design and evaluation of dosage regimens of the drugs using pharmacokinetic and biopharmaceutic parameters.
- The potential clinical pharmacokinetic problems and application of basics of pharmacokinetic

THEORY 60 Hrs

1. Drug Absorption from the Gastrointestinal Tract: 12 Hrs

3 Pharmacokinetics: Basic considerations, pharmacokinetic models, compartment modeling: one compartment model - IV bolus, IV infusion, extra-vascular. Multi compartment model: two compartment - model in brief, non-linear pharmacokinetics: cause of non-linearity, Michaelis – Menten equation, estimation of \(k_{\text{max}} \) and \(v_{\text{max}} \). Drug interactions: introduction, the effect of protein-binding interactions, the effect of tissue-binding interactions, cytochrome p450-based drug interactions, drug interactions linked to transporters.

4 Drug Product Performance, In Vivo: Bioavailability and Bioequivalence: drug product performance, purpose of bioavailability studies, relative and absolute availability. Methods for assessing bioavailability, bioequivalence studies, design and evaluation of bioequivalence studies, study designs, crossover study designs, evaluation of the data, bioequivalence example, study submission and drug review process. Biopharmaceutics classification system, methods. Permeability: In-vitro, in-situ and In-vivo methods. Generic biologics (biosimilar drug products), clinical significance of bioequivalence studies, special concerns in bioavailability and bioequivalence studies, generic substitution.

REFERENCES
2. Biopharmaceutics and Pharmacokinetics, A. Treatise, D. M. Brahmankar and Sunil B. Jaiswal, VallabPrakashan, Pitampura, Delhi
4. Textbook of Biopharmaceutics and Pharmacokinetics, Dr. Shobha Rani R. Hiremath, Prism Book
COMPUTER AIDED DRUG DEVELOPMENT
(MPH 203T)

Scope
This course is designed to impart knowledge and skills necessary for computer Applications in pharmaceutical research and development who want to understand the application of computers across the entire drug research and development process. Basic theoretical discussions of the principles of more integrated and coherent use of computerized information (informatics) in the drug development process are provided to help the students to clarify the concepts.

Objectives
Upon completion of this course it is expected that students will be able to understand,

- History of Computers in Pharmaceutical Research and Development
- Computational Modeling of Drug Disposition
- Computers in Preclinical Development
- Optimization Techniques in Pharmaceutical Formulation
- Computers in Market Analysis
- Computers in Clinical Development
- Artificial Intelligence (AI) and Robotics
- Computational fluid dynamics(CFD)

THEORY 60 Hrs

2. Computational Modeling Of Drug Disposition: Introduction 12 Hrs
 ,Modeling Techniques: Drug Absorption, Solubility, Intestinal Permeation, Drug Distribution ,Drug Excretion, Active Transport; P-gp, BCRP, Nucleoside Transporters, hPEPT1, ASBT, OCT, OATP, BBB-Choline Transporter.

c. Computers in Clinical Development: Clinical Data Collection and Management, Regulation of Computer Systems

5 Artificial Intelligence (AI), Robotics and Computational fluid dynamics: General overview, Pharmaceutical Automation, Pharmaceutical applications, Advantages and Disadvantages. Current Challenges and Future Directions.

REFERENCES
COSMETICS AND COSMECEUTICALS
(MPH 204T)

Scope
This course is designed to impart knowledge and skills necessary for the fundamental need for cosmetic and cosmeceutical products.

Objectives
Upon completion of the course, the students shall be able to understand
- Key ingredients used in cosmetics and cosmeceuticals.
- Key building blocks for various formulations.
- Current technologies in the market
- Various key ingredients and basic science to develop cosmetics and cosmeceuticals
- Scientific knowledge to develop cosmetics and cosmeceuticals with desired Safety, stability, and efficacy.

THEORY 60 Hrs

2. Cosmetics - Biological aspects: Structure of skin relating to problems like dry skin, acne, pigmentation, prickly heat, wrinkles and body odor. Structure of hair and hair growth cycle. Common problems associated with oral cavity. Cleansing and care needs for face, eye lids, lips, hands, feet, nail, scalp, neck, body and under-arm.

Controversial ingredients: Parabens, formaldehyde liberators, dioxane.

4 Design of cosmeceutical products: Sun protection, sunscreens classification and regulatory aspects. Addressing dry skin, acne, sun-protection, pigmentation, prickly heat, wrinkles, body odor, dandruff, dental cavities, bleeding gums, mouth odor and sensitive teeth through cosmeceutical formulations.

5 Herbal Cosmetics: Herbal ingredients used in Hair care, skin care and oral care. Review of guidelines for herbal cosmetics by private bodies like cosmos with respect to preservatives, emollients, foaming agents, emulsifiers and rheology modifiers. Challenges in formulating herbal cosmetics.

REFERENCES
3. Cosmetics - Formulation, Manufacture and quality control, PP.Sharma, 4th edition
4. Handbook of cosmetic science and Technology A.O.Barel, M.Paye and H.I. Maibach. 3rd edition
5. Cosmetic and Toiletries recent suppliers catalogue.
6. CTFA directory.
Semester III
MRM 301T - Research Methodology & Biostatistics

UNIT – I
General Research Methodology: Research, objective, requirements, practical difficulties, review of literature, study design, types of studies, strategies to eliminate errors/bias, controls, randomization, crossover design, placebo, blinding techniques.

UNIT – II
Biostatistics: Definition, application, sample size, importance of sample size, factors influencing sample size, dropouts, statistical tests of significance, type of significance tests, parametric tests (students “t” test, ANOVA, Correlation coefficient, regression), non-parametric tests (wilcoxon rank tests, analysis of variance, correlation, chi square test), null hypothesis, P values, degree of freedom, interpretation of P values.

UNIT – III
Medical Research: History, values in medical ethics, autonomy, beneficence, non-maleficence, double effect, conflicts between autonomy and beneficence/non-maleficence, euthanasia, informed consent, confidentiality, criticisms of orthodox medical ethics, importance of communication, control resolution, guidelines, ethics committees, cultural concerns, truth telling, online business practices, conflicts of interest, referral, vendor relationships, treatment of family members, sexual relationships, fatality.

UNIT – IV
CPCSEA guidelines for laboratory animal facility: Goals, veterinary care, quarantine, surveillance, diagnosis, treatment and control of disease, personal hygiene, location of animal facilities to laboratories, anesthesia, euthanasia, physical facilities, environment, animal husbandry, record keeping, SOPs, personnel and training, transport of lab animals.

UNIT – V
Declaration of Helsinki: History, introduction, basic principles for all medical research, and additional principles for medical research combined with medical care.